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Abstract

DIFFUSION OF A PLASMA ACROSS A MAGNETIC FIELD

by

Ronald Stephen Finn

An investigation of the problem of plasma diffusion through

a magnetic field is made through the macroscopic fluid equations.

The problem is set up in a simple one-dimensional geometry of a

semi-infinite half-space filled with plasma facing a semi-infinite

half-space containing a uniform magnetic field, and the equations

are used to describe their subsequent behavior. An attempt is

made to solve the equations analytically, but their final solution

is obtained numerically. The solutions are also used to determine

temperature and entropy increases in the plasma.



DIFFUSION OF A PLASMA ACROSS A MAGNETIC FIELD

by

Ronald Stephen Finn

I Introduction

There has been very recently a greatly increased interest in

scientific and engineering applications of ionized gases and plasmas;

this has demanded from known theory a quantitative idea of how plasmas

behave under given conditions. An example of these is the problem of

plasma containment by a magnetic field; or, stating it more generally,

the interaction of a plasma with a magnetic field generated by ex-

ternal sources.

This plasma-field interaction, which is the subject of this die-

cussion, has a number of aspects that complicate its analysis; the

complications resulting in non-linear differential equations. As a

consequence, the investigation of this interaction is limited to a

simple example; this is to make the equations concerned tractable

enough to yield quantitative data with a reasonable amount of effort.

To illustrate, the processes considered can be crudely described as
"slow" motions of plasmas through "strong" magnetic fields, in which

the electromagnetic and thermodynamic properties of the plasmas do

not change appreciably. What is meant by "slow" motions and "strong"

fields will be made clearer further on. In addition to this, the

geometry of the problem is reduced to its simplest form. Doing this

naturally limits the applicability of the resulting data; still, it

produces a good approximation of the plasma-field interaction in a

variety of cases.
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II General Discussion

The formal statement of this problem most amenable to quali-

tative investigation is in terms of the so-called macroscopic

equations of motion. Essentially these are the equations that

result from averaging the motions of many particles; this averaging

being done by integration of the Boltzmann equation in velocity

space. By means of this integration Spitzer(2) defines a current

density j, an average fluid velocity , and derives an equation of

fluid motion and a generalized form of Ohm's law.

In the case to be considered here, the fluid is assumed to be

composed only of singly charged ions of identical masses and of

electrons. To generalize to a number of types of ions does not

complicate the situation, but it turns out that this does not lead

to any additional information. A monatomic gas was chosen simply

to make the ratio of specific heats equal to 5/3 in calculations

done later. For this case, then, the equation of motion takes the

form:

+ e U- i~u 3 VP(1)

where B is the magnetic field strength, p is the scalar pressure,

and go is the mass density of the ions. This is simply Euler's

equation with the addition of a 3 x B force.

There are certain assumptions already implicit in this equation:

the mass of the electrons and the gravitational force are both neg-

lected, and the number densities of the electrons and ions are taken

to be exactly equal at all points in the fluid. Also, viscosity

effects are neglected, allowing what is actually the stress tensor

to be taken as a scalar pressure. Accounting for directional pres-

sure differences due to external magnetic fields by using a stress

tensor with at least different non-zero diagonal terms might seen

actually necessary for this type of problem; however, it will turn

out that this does not make any difference in the calculations.

Also for this case, the generalized Ohm's law reduces to the

form:

E + u x B (2)
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where 1 is the electrical resistivity and E is the electric field.

One assumption made here is that the resistivity is a constant scalar;

once again, writing it as a diagonal tensor to account for external

magnetic fields does not affect the calculations. It must be admitted

that neglecting its dependence on the temperature considerably limits

the usefulness of the solution; nevertheless, this is the first as-

sumption that will have to be made strictly for simplification.

Another assumption is that a / I t term is negligible small com-

pared to the others; here the limitation of "slowness" is first

applied.

The two equations above resulted from the "plasma" properties

of the fluid in this problem. The remaining equations to be intro-

duced are of a more general nature. Firstly, there are the continuity

equation

"t
+  )

n0 (3)

and the equation of state

p 10 R T(4)

where R is the gas constant and T is the temperature. In addition,

there are the Maxwell equations

x E u-(5)

and

V 'XB (6)

The currents due to polarization and the time rate of change of the

electric field have been neglected as being small compared to the

magnetization current which is included in the V x B term in this

last equation. The permeability, )io, is taken equal to that of free

space.

Finally, there is the energy equation

cw(he + i te c vo t

where cv is the constant-volume heat capacity and Ir is the ratio of
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specific heats. This equation implies two very important assumptions;

one, that the only source of energy is ohmic heating (viscosity having

already been neglected); and the other, that there is no heat transfer

in the fluid, i.e., all processes are adiabatic. This last assumption

is valid when heat diffusion is much slower than the process to be

described.

Now tabulating the equations obtained:

E + u x B (2)

+ V e U) 0 (3)

p p T (4)

V x .-- t (5)

j x (6)
Po

C.v(t + ' l) (p" ) 1 j2 (7)
• " pT

it is seen that there are seven equations containing seven variables.

It may also be seen that the equations are non-linear, which immediately

precludes any straightforward analytical integration of them. Thus,

proceeding with their investigation requires some additional simpli-

fications.

Before continuing with this, it is instructive to roughly sketch

some properties of plasmas in strong magnetic fields produced by con-

stant external currents. Here "strong magnetic fields" means fields

that are much larger than any field set up by currents in the plasma.

To the first order, the magnetic force lines tend to be "frozen" in

a highly conducting gas. If a motion is imparted to the gas, the

force lines are "dragged along" with it. To the next order, current

dissipation due to the finite resistivity of the gas allows a relative

motion between the gas and the field lines. To see this more clearly,

one can imagine a cluster of externally produced parallel magnetic
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field lines in a plasma with a finite resistivity. Because the

plasma is resistive, the current around an area in it will have to

decay if it is not regenerated by externally intensifying the fields.

Thus the number of flux lines passing through the area will have to

be reduced, and if their total number is constant, some of them must

appear outside of the area. Therefore, the cluster spreads out and

what the whole process "looks like" is a diffusion of the field

lines through the plasma.

III The Infinite One-Dimensional Case

Keeping in mind the limitations of "strong" magnetic fields and
"slow" processes, it is now possible to set up a specific example of

this problem that will lend itself to further simplification of the

seven equations. Consider at time t - 0 a perfectly uniform, com-

pletely ionized, monatomic plasma of density p. and resistivity

extending from the yz-plane to infinity along the positive x-axis.

The plasma is not allowed to have any motion which is not along the

x-axis; i.e., its motion is one-dimensional. Consider also a per-

fectly uniform magnetic rield of intensity Bo at t - 0 extending from

the yz-plane to infinity along the negative x-axis. The field lines

are all perfectly straight and parallel to the z-axis, pointed in the

positive z-direction, and extend to infinity in both z-directions

(Figure 1).

Fi.g .r,.

Figure 1.
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Because the field is infinite but does not extend past x - 0, there

is at t - 0 an infinite current sheet with the current travelling in

the negative y-direction and covering the x - 0 surface of the plasma.

To seek a solution for the behavior of this system for times

t > 0, one first considers the equation of motion

+ •) -i - Vp (1)

Since the plasma is always uniform in any plane perpendicular to the

x-axis, the ;-operator reduces to 4/4 x. Also, if the B-field is

always considered in the z-direction, the net currents in the plasma

always flow in the y-direction. Then the equation of motion becomes

u 4ue-W + eu-r,,'JB -T p(8

Now it may be seen why it was not necessary to regard the resistivity

and the pressure as tensors. Even if the tensor form had been re-

tained, only one term in each would have been used.

At this point the criterion of "slowness" is again applied to the

motion of the plasma. This means that the terms on the left are neg-

ligibly small, or that the terms on the right nearly cancel. Thus,

JB -- p(9)

Since for this configuration the equation

1 1 xA(6)

becomes

1 B (10)

because B only has a functional dependence on the x-coordinate, the

equation of motion then becomes

B )B 1 B2

and this may be integrated to give:
B2 B°-0212

p + .B constantauBO
2  (12)

Thus, B2/,?0 may be considered as a "magnetic pressure", and the

total pressure at all points in space remains constant as the magnetic
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and plasma pressures vary. Simply from this equation it is possible

to see that the plasma leaks slowly into the magnetic field while the

magnetic field correspondingly leaks into the plasma. Neither the

plasma nor the field has a sharp boundary at t > 0; and the current

setting up the magnetic field becomes distributed through the plasma

rather than being concentrated in a sheet. A plot of plasma density

and field strength might then be expected to look like Figure 2.

Bf j0"

Figure 2.

The next series of steps in seeking a solution to the equations consists

of reducing them as far as possible. The calculations are first simpli-

fied by using the facts that the magnetic fields are only the the z-

direction and the currents and therefore electric fields are only in

the y-direction (there are no external fields); and that all quantities

depend functionally on the x-direction. Ohm's law then becomes

J a E - u B (13)

and differentiating it with respect to x yields

uj- - B -i- (14)

The continuity equation becomes

+ u 2 + ej- -0 (15)

and Faraday's law becomes

- "" T(16)



Substituting for u/ x from the continuity equation, and for 4 E/4x

from Faraday's law into the differentiated form of Ohm's law yields

4B - - B + u i) (17)

Then substituting for j from the first Maxwell equation yields

+ Bo x 2  (B4t + B t'4-X- (18)

Now the process of reduction is carried through starting from the

energy equation

Substituting for P T from the equation of state and dividing by cv

yields

-1~ + B-rat 4- ') x - (19)

Multiplying by p and substituting R/c,- 'r- 1 and j BJao x
C) Y 2(a(Yo- Q(_ B)2X) e ftX 1 p0 4 x

Now the expression for p in terms of B derived from the equation of

motion is substituted, yielding
B ~B ~B B0

2 -B 2
1 ae 2(S BX) 01- - 1)(-)

(a)
Simple substitution produces no further reduction after this point,

and the process must be continued by the following transformation of

coordinates: let

X. - F d Tat (22)

4-
Then

x x+

X anx X 5

1P a 23)

land

_ ax a + 7 (;4)
- t t axa
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But

-. - (.u)d. - - .L (25)

by the equation.of continuity, so that

_eU (26)at eT
Thus

+ U-S x Tx -- ;-,+ -- +u -;X i-Z (7

and substituting appropriately in Eqs. (18) and (21) yields

a ) = - -(28)

f 1_f2 g 2(g fj 2
-f -VT If 1"g _L) 29

using the dimensionless variables g - /19 ; f - B/BO .

This transformation has served its intent by eliminating u as a

variable; but it has also had other effects in changing the x-axis.

The new axis is "squeezed" compared to the real x-axis when the pro-

portionality factor P /P. is small. Also, X is never less than zero

because the defining integral is never negative. Thus, large negative

values on the x-axis correspond to small positive values on the X-axis,

while large positive values on the x-axis correspond to large positive

values on the X-axis. However, this transformation has reduced the

problem to two equations in two unknowns, and the remaining discussion

is involved with trying to solve them.

For further convenience, the two equations will be rewritten in

terms of one variable

Z = x (30)

not to be confused with the z-coordinate, so that

and

- Z 4) -x z (32)4
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Eq. (28) then becomes

"I~ z 4f)f if z _-k g Ri-g z T _ Z f+ Ifg -I (33)

and expanding the term on the left yields

9~ ~~ fze f z ~f 1

Thus Eq. (33) becomesX X z 9_j~2 ' jz 9(  T 2 -fz

A f X-f z z X 9 2 X'I z X (- ) 3z

o- - f +( ._,2)_

Thus, Eq.in (3)ricmes*fr '

- (g, + .f" 42f], + f 4,(8

___S4 (35)

Correspondingly, Eq. (29) becomes

z g

+ '(l-f 2 ) g - 2(Yr- 1) L(f,) 2  (39)

It may immediately be shown that these equations lead to a pro-

cess that at least resembles ordinary diffusion. Taking the limiting

case of an incompressible plasma; i.e., g -0 1, g' -- t 0, and Y bo

causes Eq. (39) to yield the value' -1 and Eq. (38) to become

.? fi . .f, (0)
z

learranging this as

fiz
F = (ln f')' - -

(41)

and integrating it yields

2.1 (z2)la f' V- - e' (42
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and integrating it again yields

fefz2/4 dz (43)

Thus f in this case is of the form of the error function. What this

means is that the plasma sits perfectly still, being incompressible

and infinite, and the magnetic field diffuses into it. This is exactly

the process undergone by a magnetic field diffusing into a motionless

metal conductor.

IV Analytical Integration

Because Eqs. (38) and (39) are non-linear second order differential

equations, they cannot be straightforwardly integrated over all values

of z. What can be done, however, is to look at the forms of these equa-

tions as f and g asymptotically approach values determined from physical

reasoning. Remembering that the functions are now in terms of the trans-

formed coordinate X, it may be seen that at large z, g approaches one

and f approaches zero. Conversely, very near the origin, f approaches

one and g approaches zero. These statements may be made in light of the

fact that, at large distances from the origin of the real coordinate,

the magnetic field and the plasma should each be relatively undisturbed

if only a finite time has elapsed.

With this ouch knowledge in mind about the behavior of the variables,

an attempt may be made to at least partially understand the equations.

Taking Eq. (38)

fl ef -gt ft + zfg' (44)
g 2g 2g3

f" u __ ___(

-= ( f' )' -- ( ln g )' - + zfg3 (45)
2g 2fig3

Integrating ' .
ln fV l n g I' + dz (46)

J~g~ J2f'g 3

- 1z dz ] + (47)Ef +fZf,3
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Integrating again

f J exp [ z J +fAgZ dz (48)

Both f' and g' go to zero at large z; thus it is difficult to discuss

the behavior of the right-hand side of the exponent at this limit.

Nevertheless, it might be expected to go to zero, since the remaining

terms give an expression for f similar to that in the case of the in-

compressible fluid. This is what might be expected at large z where

g is nearly undisturbed.

Expressions for the term gf' may be derived from both equations.

Eq. (38) may be written

(6f)- - (t g') z()' (49)
2. 8

which integrates to

gf' = -/f (f )' dz (50)

Also from Eq. (39)

(gf,)2  zff' V ) z(l - 2) g (51)

g (gf) 2 - ' - r (] - f2 ) g,. 0 (52)
f 2

Solving this quadrtic

F 1ll + 4Y(r- 1)(l '

gf' - V 4(r- 1) g zf (53)

zf

Both of these may be integrated to give expressions for f. Unfor-

tunately, none of the above yield any new information about the

functional form of either f or g.

It turned out that none of these methods were really helpful in

uncoupling the equations to obtain an expression for either f or g.

Thcy either led to complicated integral forms or approximations too

crude to be useful. It is possible that methods for treating non-

linear differential equations that at least lead to further simplifi-

cations in this case might exist. Such methods are discussed in texts

like Ince(l) and Kaplan( ); however, their application is sufficiently

difficult that no attempt was made to use them on this problem.



- 13-

Another possible method of investigation is to substitute various

well-known functions for the variables and see if they balance the

equations at asymptotic values. A great deal of time and effort was

spent trying this, and it proved unequivocally fruitless. The actual

functions, though they might be well-behaved, are of sufficient com-

plexity that no closed function resembles either of them. This is

illustrated by noting that, in the greatly restrictive case of an

incompressible plasma, f still had the form of an open integral.

V Numerical Integration

In order to obtain specific data on the plasma-field interaction,

it was necessary to resort 'to numerical integration. The procedure

used is described in Kaplan(3 ), and simply consists of selecting values

of the functions and their derivatives at a point, calculating their

values at a point close by, and iterating. Thus the method is a numeri-

cal first integration; and since f appears to the second order in the

equations, it is necessary to integrate twice to obtain values for it.

The equations are written in the form:

gift .f'I +zfg' (54)g 2 3

f,- (f), (55)

g1 , CY- 1) ( . gff (56)
Y z(l-f 2 ) -r (1-f2)

where the first equation is Eq. (38), and the third is Eq. (39)- In

doing the calculation, values for f and g and.their derivatives were

selected at large positive z and the iteration carried toward the

origin. These initial values were adjusted until f approached one and

g approached zero at the origin and both held their asymptotic values

at large z. It would seem more accurate to start at the origin and look

for asymptotic values of the functions by iterating away from the origin,

but it was extremely difficult to estimate the first derivatives at this

point.
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The results of the numerical integration are plotted in Figure 3.

The variables are left in the dimensionless form of f and g and are

plotted as functions of the transformed coordinates.

These transformed coordinates were then recast in the form of the

real coordinates by means of the inverse transformations.
x

x= 1dx T = t (57)

0

This was also done numerically. The variables f and g are thus also

plotted as functions of x and t in Figure 4. Because the boundary

condition x - - co as X -P 0 is awkward for numerical calculation,

the origin of the real axis was determined as follows:

xdx (58)

so that there is an Xo such that

0

X0 = /gdx (59)

It was then assumed that Xo and x = 0 correspond to g - because the

plasma does not move as a mass, due to the balance between the magnetic

and gas pressures. This yielded X0 - .35 from Figure 3 and Xo = .348

from a graphical integration of g over x in Figure 4. These figures

thus determine the magnetic field strength and the plasma density in

o th space and time as the diffusion process takes place. By also

calculating temperature and entropy changes in the gas, its total be-

havior may be considered adequately defined.

The temperature of the gas at each point was calculated from the

x-axis curves of f and g as follows: since

B2_ B2
oP" 0o ;1U p" (60)

then B 2 -B 2

T =p = o (61)1R 2po eR

Changing to dimensionless variables

T-M 2 (l - f2) (62)
pgo o g
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which is plotted in Figure 5 with

B0
2  (63)T O  I - R o po

Since the process was assumed adiabatic, the specific entropy was

calculated from the x-axis curves of g and f by using the expression

1

s - o + cp in- + C in (64)
0Po

Changing to dimensionless variables
B2_ B2

S~~ ~ ~ -M~)+c n B
2.o

10

s o +c p i ( ) + v i

= SO + Cp ln(!) + c. ln (1 - f2) (65)

Or, subtracting so and dividing by cv

_sm ln(, ) + ln C1 _ f 2) (66)
Cv

Then the increase in entropy as a function of x and t is given by

10 s = g s, which was calculated and plotted in Figure 6 using

= /3. The total increase in entropy as a function of time was

obtained by graphically integrating the curve in Figure 6, and was

found to be

~S -5.63 .cVf -- -

All of the calculations for these graphs are only to slide-rule

accuracy. Because of this, and because of the error involved in

estimating the boundary conditions for the f and g curves in Figure

3, the curve shapes and the derived quantities may only be considered

to be correct to somewhat better than an order of magnitude. Greater

accuracy would require the services of a computer.
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Figure 5. Plasma temperature as a function of the
real coordinates.
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Figure 6. Increase in entropy as a function of the
real coordinates.


